Remark on fundamental groups and effective Diophantine methods for hyperbolic curves

نویسنده

  • Minhyong Kim
چکیده

In a few earlier papers ([8], [9], [10]) attention was called to the striking parallel between the ideas surrounding the well-known conjecture of Birch and Swinnerton-Dyer for elliptic curves, and the mysterious section conjecture of Grothendieck [6] that concerns hyperbolic curves. We wish to explain here some preliminary ideas for ‘effective non-abelian descent’ on hyperbolic curves equipped with at least one rational point. We again follow in an obvious manner the method of descent on elliptic curves and, therefore, rely on conjectures. In fact, the main point is to substitute the section conjecture for the finiteness of the Shafarevich group. That is to say, the input of the section conjecture is of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Notes on thin matrix groups

We give a brief overview of the developments in the theory, especially the fundamental expansion theorem. Applications to diophantine problems on orbits of integer matrix groups, the affine sieve, group theory, gonality of curves and Heegaard genus of hyperbolic three manifolds, are given. We also discuss the ubiquity of thin matrix groups in various contexts, and in particular that of monodrom...

متن کامل

Rims-1750 on the Cuspidalization Problem for Hyperbolic Curves over Finite Fields

In this paper, we study some group-theoretic constructions associated to arithmetic fundamental groups of hyperbolic curves over finite fields. One of the main results of this paper asserts that any Frobeniuspreserving isomorphism between the geometrically pro-l fundamental groups of hyperbolic curves with one given point removed induces an isomorphism between the geometrically pro-l fundamenta...

متن کامل

Absolute anabelian cuspidalizations of configuration spaces over finite fields

In the present paper, we study the cuspidalization problem for fundamental groups of configuration spaces of proper hyperbolic curves over finite fields. The goal of this paper is to show that any Frobenius-preserving isomorphism of the geometrically pro-l fundamental groups of hyperbolic curves induces an isomorphism of the geometrically pro-l fundamental groups of the associated configuration...

متن کامل

A short remark on the result of Jozsef Sandor

It is pointed out that, one of the results in the recently published article, ’On the Iyengar-Madhava Rao-Nanjundiah inequality and it’s hyperbolic version’ [3] by J´ozsef S´andor is logically incorrect and new corrected result with it’s proof is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008